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ABSTRACT
Empirical analyses of complex games necessarily focus on
a restricted set of strategies, and thus the value of empir-
ical game models depends on effective methods for selec-
tively exploring a space of strategies. We formulate an itera-
tive framework for strategy exploration, and experimentally
evaluate an array of generic exploration policies on three
games: one infinite game with known analytic solution, and
two relatively large empirical games generated by simula-
tion. Policies based on iteratively finding a beneficial devia-
tion or best response to the minimum-regret profile among
previously explored strategies perform generally well on the
profile-regret measure, although we find that some stochas-
tic introduction of suboptimal responses can often lead to
more effective exploration in early stages of the process. A
novel formation-based policy performs well on all measures
by producing low-regret approximate formations earlier than
the deviation-based policies.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Economics

Keywords
Empirical game theory, strategy exploration

1. INTRODUCTION
Often the most difficult obstacle to game-theoretic analy-

sis of complex scenarios is developing a model of the game
situation. In the empirical game-theoretic analysis (EGTA)
approach [Wellman, 2006], expert modeling is augmented
by empirical sources of knowledge: data obtained through
real-world observations or (as emphasized here) outcomes of
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high-fidelity simulation. Simulation models employ proce-
dural descriptions of strategic environments, which are of-
ten much easier to specify than declarative domain mod-
els. Prior work has developed an extensive EGTA method-
ology, where techniques from simulation, search, and statis-
tics combine with game-theoretic concepts to characterize
strategic properties of a domain.

A high-level view of the EGTA process is presented in
Figure 1. The diagram highlights the iterative nature of
EGTA. The basic step is simulation of a strategy profile
(vector of strategies, one for each player), determining a
payoff observation (i.e., a sample drawn from the outcome
distribution induced by stochastic elements of the simula-
tion environment), which gets added to the database of pay-
offs. Based on the accumulated data, we induce an empirical
game model.
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Figure 1: Dynamic game formulation through em-
pirical game-theoretic analysis.

The EGTA process naturally supports a dynamic view of
game formulation. Though the full strategy space allowed by
the simulator may be large or infinite, due to computational
constraints we can generally obtain direct outcome obser-
vations for a finite (and limited) set of profiles. Therefore,
it makes sense to start from the most salient strategy can-
didates at first, incrementally adding candidates based on
intermediate analysis results. For example, we might first
solve a fairly restricted version of the game, admitting only
a small slice of conceivable strategies. Based on these re-
sults, we could then generate additional strategy proposals
to be added to the candidate set. Further simulation and
analysis produces solutions for an expanded game, which
then represents the starting point for subsequent rounds of
refinement.

We focus here on one step in this process, namely the se-
lection of strategies to add to the current candidate set: the
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method’s strategy exploration policy. This problem bears a
strong resemblance to the profile selection problem [Jordan
et al., 2008] and the equilibrium finding algorithms proposed
by Zinkevich et al. [2007]. In this work, we attempt to de-
termine the optimal simulation sequence of strategy sets,
instead of a sequence of profiles. Because simulating a set
of strategies involves simulating all of its corresponding pro-
files, the strategy exploration problem is a special case of the
profile selection problem.

2. EMPIRICAL GAMES
A strategic game Γ = 〈N, (Si), (ui)〉 consists of a finite

set of players, N indexed by i; a non-empty set of strategies
Si for each player; and a utility function ui : ×j∈NSj → R

for each player. A symmetric game satisfies Si = Sj and
ui(·) = uj(·) for every i, j ∈ N . For simplicity, we assume
symmetric games in this paper, however extending the meth-
ods and analysis to non-symmetric games is straightforward.
Let ΓS↓X be a restricted game with respect to the base
game Γ, where each player i ∈ N in ΓS↓X is restricted to
playing strategies in Xi ⊆ Si.

Each profile s is associated with the set of neighboring
profiles that can be reached through a unilateral deviation
by a player. The unilateral deviation set for player i and
profile s ∈ S is Di(s) = {(ŝi, s−i) : ŝi ∈ Si}, and the corre-
sponding set unspecified by player is D(s) = ∪i∈NDi(s).

Let Δ(·) represent the probability simplex over a set. A
mixed strategy σi is a probability distribution over strate-
gies in Si, with σi(si) denoting the probability player i will
play strategy si. The mixed strategy space for player i
is given by Δi = Δ(Si). Similarly, ΔΓ = ×i∈NΔi is the
mixed profile space.

For a given player i, the best-response correspondence
for a given profile σ is the set of strategies which yield the
maximum payoff, holding the other players’ strategies con-
stant. The player i best-response correspondence for
opponent profile σ−i ∈ Δ(S−i) is

Bi(σ−i) = arg max
σ̂i ∈ Δi

ui(σ̂i , σ−i)

and for Δ ⊆ Δ(S−i) is Bi(Δ) = ×σ−i∈ΔBi(σ−i). The over-
all best-response correspondence for profile σ ∈ Δ(S)
is B(σ) = ×i∈NBi(σ−i) and for Δ ⊆ Δ(S) is B(Δ) =
×σ∈ΔB(σ). A Nash equilibrium (NE) is a profile σ ∈ ΔΓ

such that σ ∈ B(σ).
We use the symbols Bi(σ−i) and Bi(Δ) to represent the

pure-strategy variants of the best-response correspondences:
Bi(σ−i) = Bi(σ−i) ∩ Si and Bi(Δ) = Bi(Δ) ∩ Si. We also
introduce symbols for the pure-strategy best-response
to a set of profiles X = ×i∈NXi where ∅ ⊂ Xi ⊆ Si:
B†

i (X−i) = Bi (Δ(X−i)) and B†(X) = ×i∈NB†
i (X−i). Un-

der B†(·), each player’s strategies are best responses to joint
(correlated) mixtures over opponent strategies. A set of pro-
files X ⊆ S is a formation [Harsanyi and Selten, 1988] if
B†(X) ⊆ X; it is a primitive formation if no proper sub-
set of X is a formation. We use the term minimal formation
synonymously with primitive formation.

Strategy s′i is an improving deviation for agent i with
respect to profile σ if i would benefit by playing s′i rather
than its designated strategy in σ: ui(s

′
i, σ−i) > ui(si, σ−i).

Let Di(σ) be the set of improving deviations with re-
spect to σ for player i.

The regret measures described in this section quantifies

the stability of strategies and profiles, respectively. A player’s
regret, δi(σi|σ−i), for playing strategy σi ∈ Δi against
opponent profile σ−i ∈ Δ(S−i) is maxsi∈Si ui(si, σ−i) −
ui(σi, σ−i). Finally, we use the regret of the constituent
strategies to define the regret of a profile. The regret of
profile σ ∈ Δ, is the maximum gain from deviation from σ
by any player. Formally, ε(σ) = maxi∈N δi(σi|σ−i). A Nash
equilibrium σ has no regret, i.e., ε(σ) = 0.

We can define a similar notions of regret for strategy sets.

Let ÛUi be the function that returns the best-response utilities
of player i for each σ−i ∈ S−i when player i’s strategy set

is limited to Xi. Thus, ÛUi(σ−i; Xi) = max{ui(si, σ−i)|si ∈
Xi}. For ∅ ⊂ Xi ⊆ Si, the regret of player i for having the
restricted strategy set Xi against Δ(X−i) is δi(Xi|X−i) =

maxσ−i∈Δ(X−i)
ÛUi(σ−i; Si) − ÛUi(σ−i; Xi). For ∅ ⊂ X ⊆ S,

the regret over all players for having restricted joint strategy
set X is ε(X) = maxi∈N δi(Xi|X−i). A set of profiles X ⊆ P
is an ε-formation if ε(X) ≤ ε.

3. STRATEGY EXPLORATION PROBLEM
The issue of strategy exploration is one facet of the broader

problem of how to allocate simulation resources across the
profile space. In the most general form, a policy for the re-
source allocation problem determines a sequence of profiles
{s(j)}k

j=1 to simulate. Existing work on the profile selection
problem (see Jordan et al. [2008] for a comprehensive re-
view) reformulates the selection problem as a search problem,
where the goal of search is to identify a low regret profile.
In contrast to these models, the strategy exploration prob-
lem focuses on determining a sequence of restricted-games
ΓS↓X(0) , . . . , ΓS↓X(k) to be simulated, where X(0) ⊂ · · · ⊂
X(k) ⊆ S. Each restricted game X(j+1) is formed by adding
an additional strategy to some player’s restricted strategy
set in X(j). Although fine-grained control of profile sam-
pling is a more general perspective, we note that in practice
dynamic modification of the strategy set is often deliberately
controlled (usually manually), and is viewed as a significant
and distinct decision. In typical studies reporting substan-
tial empirical-game analyses [Kephart and Greenwald, 2002,
Phelps et al., 2006, Wellman et al., 2007, 2008], the strategy
set is hand-selected, and—though the underlying process is
not always detailed in published reports—often extended it-
eratively in the course of the study. As each strategy is
added, the analysis proceeds to explore (often but not al-
ways exhaustively) the expanded profile space. Since the
profile space grows exponentially in strategies, and adding
a strategy is an (implied) commitment to evaluate it ade-
quately, strategies to add must be considered carefully.

We describe policies for the revealed-payoff model of
observation [Jordan et al., 2008], in which each observation
determines the true payoff for a designated pure-strategy
profile. In this case, simulating a restricted game means
observing the payoffs for each pure-strategy profile in X(j).
Some of the policies we introduce require access to some pay-
offs outside of X(j) for combinations of a candidate strategy
and the current equilibrium. Computing these payoffs will
require some additional simulation, but far short of what
would be entailed to fill out the profile space if the candi-
date is actually selected.1 With the exception of the ran-

1This is true assuming that the support of the current equi-
librium is much smaller than X(j).
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dom (RND) strategy exploration policy, in the worst case
the policies require knowledge of the payoffs for all single
player deviations from profiles in X(j) to each of the re-
maining strategies. In other words, the utility functions for

each player i must be defined over Si ×X
(j)
−i for the jth step

in the exploration. We define a concept that encapsulates
this model of a game, called an augmented restricted-game.
Let Γ�

S↓X be an augmented restricted-game with respect

to the base game Γ, where players in Γ�

S↓X are restricted to
playing profiles in X ⊆ S, however the utility function for
each player i is a mapping ui : Si × X−i → R.

We can calculate the base-game regret of any profile in
ΓS↓X by calculating its restricted-game regret, if X is a for-
mation. In addition, we know that our estimate can be
understating the base-game regret by no more than ε, if X
is an ε-formation. However, given the augmented restricted-
game Γ�

S↓X , we can calculate the base-game regret for any

profile in ΓS↓X . Furthermore, given Γ�

S↓X , we can calculate

ε(X) without any additional profile observations. Therefore,
we consider a variation of the strategy exploration problem
that determines a sequence of augmented restricted-games
Γ�

S↓X(0) , . . . , Γ
�

S↓X(k) to be simulated, where X(0) ⊂ · · · ⊂
X(k) ⊆ S.

How should we evaluate a candidate strategy exploration
policy? Presumably, we are interested in solutions to the
true game, and some strategies are more critical to deter-
mining these solutions than others. Thus, we seek policies
that will introduce these strategies as early as possible. For
example, if the true solution involves strategies S∗ (e.g., a
Nash equilibrium with support on S∗), we might evaluate a
policy based on how many iterations it takes to cover this
set. However, this approach treats finding a “solution” as
an all-or-none matter, and fails to consider the usefulness of
intermediate results. Therefore, we prefer a measure that
captures degrees of quality of results at all steps of the iter-
ative process. For this we appeal to the concepts of regret
introduced previously.

To evaluate the quality of an empirical game model, we
propose two evaluation metrics. In the first, we solve the
model ΓS↓X by employing our solution concept of choice
(e.g., identifying a sample Nash equilibrium), and measure
the regret of this solution profile with respect to Γ, the“true”
or base game.2 Intuitively, this captures the quality of the
profile we would propose if we had to stop at the current it-
eration. A profile with regret ε constitutes an approximate,
ε-Nash equilibrium, with ε = 0 corresponding to exact equi-
librium. All else equal, we consider profiles with smaller ε(s)
to be more stable, and thus more plausible as plays of the
actual game. Therefore, our objective is to find a minimum-
regret profile.

Observe that a minimum-regret profile in Γ�

S↓X may not
be a Nash equilibrium in ΓS↓X . The second metric we con-
sider measures ε(X) for the selected Γ�

S↓X . This metric is
appropriate, for instance, when we care about the regret of
a set of profiles (a set-valued solution). If X ⊂ S is a for-
mation, then, as analysts, we can restrict out attention to
ΓS↓X without risk of understating any regret values for the

2Of course, we cannot perform this evaluation in the con-
text of an actual EGTA exercise, where the true game is
unknown. All references to evaluation here are from the per-
spective of experimentally evaluating solutions to the strat-
egy exploration problem.

profile set X, not just solution profiles. Therefore, our ob-
jective is to find a minimum-regret ε-formation. Note that
these objectives are not always aligned.

4. DEVIATION POLICIES
Consider the example two-player game presented in nor-

mal form in Table 1. There are four available strategies,
S = {1, 2, 3, 4}. The strategy exploration problem asks in
which order to introduce the strategies to our empirical game
analysis. Introducing strategy 1 first, for example, would
produce the solution profile (1, 1) after the first iteration,
which has a regret ε((1, 1)) = 3.

1 2 3 4
1 1,1 1,2 1,3 1,4
2 2,1 2,2 2,3 2,6
3 3,1 3,2 3,3 3,8
4 4,1 6,2 8,3 4,4

Table 1: An example symmetric two-player game of
4 strategies. Exploring strategies in the sequence
(1,2,3,4) yields increasing regrets until the last step.

Note that regardless of the ordering, once X = S, equilib-
ria in the restricted game and base game coincide, so regret is
zero. Thus, we might expect that regret would tend to start
high, and decrease progressively until reaching zero in the
last step. This is not necessarily the case, however. For ex-
ample, suppose we introduce strategies in the order (1,2,3,4).
The sequence of regrets we observe would be (3,4,5,0), which
increases monotonically until inevitably falling to zero at the
end.

Thus, in the worst case it will be difficult to guarantee
progress during intermediate steps of the EGTA process.
Rather than dwell on this worst case, however, we consider
it more useful to compare alternative exploration policies
in expectation, with respect to random choices they may
make. For example, consider the following possible explo-
ration policies:

• Random (RND). Pick one of the remaining strategies
with equal probability.

• Improving deviations only (DEV). Find a Nash equi-
librium, σ, of the current restricted game, and choose
a strategy uniformly from D(σ) \ X.

• Best response (BR). Find a Nash equilibrium, σ, of
the current restricted game, and choose a strategy uni-
formly from B(σ) \ X.

Note that DEV and BR build on analysis of the current
restricted game; however, on the first iteration, DEV and BR
choose randomly. These policies would also choose randomly
if there are no improving deviations among the unexplored
strategies — in which case we already have a equilibrium in
Γ anyway.

We can evaluate each of these policies on the example
game of Table 1. Since the game is so simple, we can cal-
culate the expected regrets exactly, as shown in Table 2.
From the table, we can see that expected regret does indeed
decrease, under all three policies, as more strategies are ex-
plored. Moreover, limiting exploration to deviations (DEV)
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dominates (at least as good in expectation at each step) ran-
dom choice (RND), and picking best responses (BR) is the
best of the three policies.

Step
Expected regret

RND DEV BR

1 3.000 3.000 3.000
2 2.333 1.375 0.000
3 1.250 0.208 0.000
4 0.000 0.000 0.000

Table 2: Expected regret under three exploration
policies for the example game.

In addition to the three policies (RND, DEV, BR) intro-
duced above, we consider the following exploration policies
for analysis:

• Alternating (BR+DEV). Apply BR and DEV, in turn,
on successive iterations.

• Softmax (ST). Find a Nash equilibrium σ of the cur-
rent restricted game. Choose strategy s′i from D(σ)\X
with probability given by the softmax formula applied

to deviation gains: αe(u(s′i,σ−i)−u(σ))/τ where τ is the
typical temperature parameter and α is a normalizing
constant. Low values of τ mimic a best response (i.e.,
ST approximates BR), whereas τ → ∞ turns the se-
lection equiprobable (i.e., ST approximates DEV).3

5. MINIMUM-REGRET PROFILES
Determining the profile with minimum regret in a re-

stricted strategy space is fundamental to the modified best-
response policy of the previous section and essential to eval-
uating policies on the first evaluation metric. We identify a
minimum-regret constrained-profile (MRCP) by solving the
following optimization problem:

arg min

σ∈Δ
Γ�

S↓X

ε(σ).

This is a constrained optimization problem with a nonlin-
ear, non-differentiable objective function and both inequal-
ity and equality constraints. Because the regret function
is non-differentiable, standard optimization techniques that
calculate the gradient of the Lagrangian do not apply. In
lieu of gradient-based techniques, various direct search algo-
rithms have been proposed to solve optimization problems
where a gradient is not available or efficiently calculable. In
practice, one of the most popular direct search algorithms is
the amoeba method [Nelder and Mead, 1965]. This method
iteratively refines a simplex in the search space until con-
vergence or some fail condition is reached. Walsh et al.
[2002] used the amoeba method to calculate Nash equilib-
ria in an empirical game representing a continuous double
auction scenario.

What about maintaining feasibility? When applying the
amoeba method to the MRCP optimization problem, we
have to reconcile the fact that the optimization problem is
constrained and the amoeba method is an unconstrained op-
timization technique. However, if an iteration starts with a

3So that the temperature settings are meaningful across
games, we employ normalized payoffs in computing gains.

simplex where each vertex is within the feasible region, then
we can modify the amoeba method such that we always end
the iteration with a feasible simplex. To do this, we modify
the reflect and expand steps of the original amoeba method
to generate only feasible vertices. We use a binary search to
select the maximum feasible reflection (α) and expansion (γ)
scaling parameters, respectively, if the unmodified reflected
or expanded vertex is infeasible. Using this approach, all
the vertices of the simplex are feasible at the end of each
iteration.

We make an additional observation. Minimum regret pro-
files may not have full support. In fact, minimum regret pro-
files will often have small support, a feature that is exploited
by the equilibrium finding algorithms of Porter et al. [2008].
If the minimum regret profile does not have full support,
then the inequality constraints on σ are active at the min-
imum. When the simplex approaches the boundary, it col-
lapses to near zero measure. When this occurs, the amoeba
algorithm may not recover to find a local minimum.

One way to deal with this problem is to search over re-
stricted supports if the amoeba algorithm degenerates. The
policies repeated compute the MRCP of different restricted
games. The simplex will often degenerate to a support in
which the MRCP has already been calculated. Using mem-
oization we can dramatically improve performance.

6. FORMATION POLICIES
In Section 4 we defined an initial set of strategy explo-

ration policies. Of those, the best-response (BR) policy is
one of the most straightforward and intuitive. At the kth it-
eration, pick a Nash equilibrium in ΓS↓X(k) . Choose a best-
response strategy from among the remaining strategies and
use that strategy to construct X(k+1). The basic idea be-
hind BR is successively refuting the current minimum-regret
profile. This is a common theme among profile search algo-
rithms like MRFS, EVI, and IGS [Jordan et al., 2008] . Our
next strategy exploration policy is the natural extension of
this idea to refuting the best ε-formation. The minimum-ε-
maximum-τ (MEMT) strategy exploration policy chooses
a strategy that maximizes the gain (τ) to deviating from a
minimum-ε formation. The complete procedure is given in
Algorithm 1. The algorithm works in two stages. The first
stage selects a minimum-ε formation [Jordan, 2009]. The
second stage selects a strategy that maximizes the τ of the
minimum-ε formation.

The minimum-ε formation, denoted by Xmin, may have
a τ -maximizing strategy, denoted by si, that is already in
X. In this case, we place Xmin in a tabu list, denoted by
T . Subsequent calls to FIND-FORMATION will return the
minimum-ε that is not in T or NULL if all formations are
in T . This process continues until a τ -maximizing strategy
is found that is not in X.

7. EXPERIMENTS
Our experimental approach follows the process we intro-

duced in Section 4. We start with a base game Γ, and
compare the results of applying various strategy exploration
policies. We evaluate policies based on the two evaluation
metrics given in Section 3: expected minimum profile-regret
and expected minimum formation-regret.

To evaluate the expected minimum-regret, we select a
minimum-regret profile after each iteration of a policy. We
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Algorithm 1 MEMT(Γ�

S↓X)

T ← ∅
Xmin ← FIND-FORMATION(Γ�

S↓X , |X|, T )

Ûsi ← NULL
while Ûsi is NULL and Xmin is not NULL do

si ← FIND-TAU(Γ�

S↓X , Xmin)

if si �∈ X then
Ûsi ← si

else
T ← T ∪ {Xmin}
Xmin ← FIND-FORMATION(Γ�

S↓X , |X|, T )

if Ûsi is NULL then
Ûsi ← FIND-TAU(Γ�

S↓X , X)

return Ûsi

evaluate the policies on three games. The first is a two-player
game based on the first-price sealed-bid auction (FPSB).
This game has an infinite strategy space, but is convenient
for analysis because we have known analytic forms for its
payoff and best-response functions. Unfortunately, we do
not have analytic forms for computing formation-regret and
a MRCP, so we forgo analysis of the augmented policies in
this scenario. Reeves [2005] extensively studied this game
as a test for EGTA methods, and we build on his results to
conduct our investigation of strategy exploration.

Our second test is the four-player empirical game gener-
ated in a recent study of CDA bidding strategies [Schvartz-
man and Wellman, 2009]. The empirical CDA game com-
prises 13 strategies, including strategies from the literature
as well as some derived by reinforcement learning as part of
the study.

Our final test is another empirical game, this one based on
the Trading Agent Competition (TAC) Travel game [Well-
man et al., 2007]. This version is a two-player model with
35 strategies, constructed manually with no explicit explo-
ration policy.

The CDA and TAC games are most representative of do-
mains we expect to subject to empirical game analysis. Our
experiments in these domains are limited, however, to ex-
ploring subsets of those strategies actually introduced in the
respective EGTA studies. The FPSB example provides the
advantage of an infinite strategy space to explore experi-
mentally, enabled by its relatively simple analytic form.

7.1 First-Price Sealed-Bid Auction
In a first-price sealed-bid auction with n players, each

player i has a private valuation (type) ti of a particular
good, for which it submits a single bid ai in a concealed
manner. The highest bidder gets the good, and obtains a
payoff equal to its valuation minus its bid. Other bidders
obtain zero payoff. In case of a tie, the winner is chosen
randomly among the highest bidders.

Following Reeves [2005], we consider a restricted version
of the game with players limited to strategies that bid a con-
stant fraction of their valuations. That is, agent i’s strategy
is defined by a shading factor ki ∈ [0, 1], such that it bids
ai = kiti. Taking this restriction, and the assumption types
are drawn U [0, 1], yields a normal form game we designate
fpsbn.

We exploit analytical results [Reeves, 2005] to identify de-

viations, best responses, and equilibria, and to calculate re-
gret with respect to the true game. Of course, in an arbi-
trary scenario we would not generally have access to such
convenient analytic methods. With an analytical form for
the best-response correspondence, the BR algorithm behaves
much like the double oracle algorithm [McMahan et al., 2003,
Zinkevich et al., 2007].

We compare expected regret for the candidate policies
enumerated above, applied to fpsb2. All policies start with
a random strategy k ∼ U [0, 1], then on subsequent equi-
libria choose based on their stated criteria. We estimate
expected regrets by sampling 106 exploration sequences for
each method described above. Regrets in any given sequence
are computed as the theoretically best response to the latest
equilibrium found, given the strategies X explored thus far.
For n = 2, we are able to establish that all equilibria are
in fact symmetric, however we omit the proof due to space
constraints. Therefore, we can limit attention to symmet-
ric pure-strategy profiles in our search for Nash equilibria
at each iteration. In case of multiple equilibria, we average
their respective regrets with respect to the base game. For
the ST (softmax) method, we uniformly generate sets of 100
deviating strategies to pick from (at each step), and consider
temperatures τ ∈ {.1, 1, 10}.
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Figure 2: Expected regret in fpsb2 calculated by
sampling 106 exploration sequences.

The results are shown in Figure 2. All methods that em-
ploy BR display comparable performance, and the worst
method is clearly RND. Methods that employ random im-
proving deviations (BR+DEV, DEV, ST10, and ST1) per-
form better in the early stages (steps 3-11), while those pick-
ing mostly best responses (BR and ST.1) catch up and per-
form slightly better thereafter. For steps 2–22, with the
exception of a few comparisons,4 all differences are statisti-
cally significant at the 0.05 level.

These results can be better understood by analyzing Fig-
ure 3, which shows regrets in fpsb2 after deviating from ki to
kj . The surface spans only combinations such that kj is an
improving deviation from the profile where both players play
ki. The new equilibrium will have both playing kj , thus the

4
BR+DEV/DEV steps 8–9 (p > .3); BR+DEV/BR steps 2, 13–14

(p > .1); BR+DEV/ST1 step 5 (p = .13); BR+DEV/ST.1 step 2
(p = .2); BR/ST1 step 15 (p = .06); BR/ST.1 step 2 (p = .2);
ST10/ST1 step 8 (p = .06); ST10/ST.1 step 11 (p = .12); ST1/ST.1
step 14 (p = .13)
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height of the surface corresponds to the regret of that profile.
The solid black line plots the best response as a function of
ki (projected onto the surface). The dotted (magenta) line
represents the average deviation produced gain by the DEV
policy. Above equilibrium, BR converges towards equilib-
rium in exactly one step, while DEV does so in expectation
(solid black line overlaps dotted line exactly at kj = 0.5).
Below equilibrium, however, BR has a relatively slow con-
vergence rate for ki < 0.4, whereas DEV provides a much
better expectation, which makes all methods using random
improving deviations initially better. For 0.4 < ki < 0.5,
BR and DEV (in expectation) become indistinguishable.
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7.2 Continuous Double Auction
The continuous double auction (CDA) [Friedman, 1993]

is a simple and well-studied auction institution, employed
commonly in commodity and financial markets. The “dou-
ble” in its name refers to the fact that both buyers and
sellers submit bids, and it is “continuous” in the sense that
the market clears instantaneously on receipt of compatible
bids. The CDA has also been widely employed in exper-
imental economic studies, involving both human and soft-
ware agents. Numerous papers have proposed novel bidding
strategies for CDAs, accompanied by experimental compar-
isons to other known strategies. Some of the more promi-
nent strategy families studied include“zero intelligence plus”
[Cliff, 1998], “Gjerstad-Dickhaut” [Gjerstad and Dickhaut,
1998, Tesauro and Bredin, 2002], and “adaptive aggressive-
ness” [Vytelingum et al., 2008]. In most literature the com-
parison contexts (i.e., profiles of other-agent strategies in
which featured strategies are evaluated) are selected by the
experimenter. Exceptions include an early empirical game
model [Walsh et al., 2002], and several studies that employ
evolutionary search methods [Cai et al., 2007, Phelps et al.,
2006].

In a recent EGTA study of a CDA game [Schvartzman and
Wellman, 2009], the authors explored representative versions
of all the prominent strategies from previous literature, and
generated additional strategies using reinforcement learn-

ing. In total, the EGTA process iteratively considered 14
strategies: eight from the literature and six derived by re-
inforcement learning. The final empirical game model in-
cluded evaluations for all four-player profiles over 13 of the
strategies.5 For purposes of the present study, we designate
this model as the base game, and experimentally evaluate
strategy exploration policies applied to these 13 strategies.
This is of course a vast simplification of the actual infinite
strategy space, but allows us to consider the implications of
alternative orders that the strategies could be explored.

We evaluated expected regret as a function of number
of steps by sampling 100 exploration sequences for each of
DEV, RND, STτ for each starting strategy. The policies BR
and MEMT require 13 sequences respectively, given that
their exploration is deterministic after the random choice
of starting strategy. For the restricted-game policies, we
computed sample equilibria via replicator dynamics, evolv-
ing strategy populations until the corresponding symmetric
mixed strategy has regret below 10−3. In order to speed up
computation, we seeded initial population proportions with
the latest equilibrium mixture found in a given exploration
sequence. We also cached equilibrium mixtures and MRCPs
for repeated usage throughout the sampling process.

The results for the profile-regret analysis, presented in
Figure 4, show that all methods employing improving de-
viations provide a similar expected regret, and clearly out-
perform RND. Different degrees of randomness in selecting
beneficial deviations (τ) provided slightly different perfor-
mance, and most variations of STτ resulted better than BR
for steps 3–7. However, the augmented policy MEMT dis-
played the best performance. MEMT required 6 steps to
reach the tolerance threshold in the worst case, but reached
the threshold in 3.84 steps on average. This differs substan-
tially with the improving-deviation policies results, where it
took 8 steps to reach the 10−3 level. We also note, with
the exception of MEMT, the figure displays the restricted-
game variant of each policy, however the augmented version
of each respective policy displayed quantitatively similar re-
sults.
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Figure 4: Expected minimum profile-regret in the
empirical CDA game.

5The CDA scenario simulated was designed to be similar to
prior studies, and employs 16 bidding agents. The authors
couple the agents into groups of four to reduce the analysis
to that of a four-player game [Wellman et al., 2005]. With 13
strategies there are a total of 1820 distinct profiles evaluated
by simulation.
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We evaluated two policies on the formation-regret mea-
sure: BR and MEMT. The BR policy is representative of
the improving-deviation policies, whereas MEMT is a policy
specifically design to minimize expected formation-regret.
Like the profile-regret analysis, we found that MEMT and
BR required 6 and 8 steps, respectively, to reach the tol-
erance threshold in the worst case, but reached the thresh-
old in 3.84 and 4.30 steps on average. One explanation for
this quick convergence is the existence of a 2-strategy prim-
itive formation. This is the smallest formation that exists
in the game and, therefore, the lower bound on the opti-
mal number of steps to termination. If either support of the
smallest primitive formation is the starting strategy, both
policies terminate in two steps. Of the 13 starting strate-
gies, 10 terminate in four steps or less for MEMT and 9 for
BR, respectively. In cases where the best-response strategy
is supporting the minimal profile-regret and the minimal
formation-regret, both policies behave similarly. This oc-
curred frequently in the CDA game, potentially due to its
small primitive-formation.

7.3 TAC Travel Game
The original TAC market game, introduced in 2000, pre-

sented a challenge in the domain of travel shopping. In
TAC/Travel, agents bid in three different kinds of auction
mechanism (28 simultaneous auctions in all) to acquire flights,
hotel rooms, and entertainment tickets to make trips for
their clients. Years of competition and continued study led
to numerous advances in trading agent strategy Wellman
et al. [2007]. The University of Michigan team Walverine
has been conducting an ongoing EGTA study of this game
since 2004, with over 190,000 game instances in its data
set at this writing. This exercise supported the selection of
the Walverine version entered in 2004–06 tournaments, and
has contributed in many ways to the development of EGTA
methodology.

For the current experiment in exploration policy, we con-
sider the two-player version of this empirical game (i.e., pro-
files with multiples of four agents playing any strategy).
We further restrict consideration to 35 strategies for which
we have evaluations of all combinations (630 profiles). We
followed the same basic experimental procedure as for the
CDA game described in the previous section. Results are
presented in Figure 5. Unlike the results of the CDA ex-
periment, MEMT and BR display similar quality. BR and
MEMT require 7 and 8, respectively, steps to reach the tol-
erance threshold in the worst case, but reach the threshold
in 4.74 and 4.86 steps on average, respectively.

Unlike the CDA game, the TAC/Travel game does not have
a small primitive formation. In fact, the smallest primitive
formation has 27 strategies. Figure 6 shows the expected
minimum formation-regret averaged over the 35 traces up
to a maximum of 16 steps. The dotted line shows the
formation-regret of the optimal policy—the policy that yields
the lowest regret at each step. The MEMT algorithm nearly
converges in mean to the optimal policy after 15 steps, while
BR is slower to converge with an expected regret of approx-
imately 1.8 times that of MEMT after the same number of
steps.

8. DISCUSSION
Our investigation of alternative strategy exploration poli-

cies provides evidence for several basic observations. First,
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not surprisingly, any reasonable policy produces better can-
didate solutions as more strategies are explored. Second,
considering only policies that provide a gain from devia-
tion over the current equilibrium (or approximate forma-
tion) produces significant benefits over unrestricted selec-
tion. This leaves open the possibility that non-improving de-
viators with particular characteristics (e.g., complementar-
ity with other known strategies) may be worthwhile. Third,
formation-finding policies like MEMT perform well when
small primitive formations exist and are comparable to the
best improving-deviation policies when they do not.

Fourth, although best response is generally quite effective,
there appears to be some advantage to exploring non-best
response strategies, especially early in the process. As sug-
gested by our analysis of the fpsb2 situation, exclusively
introducing BR strategies may cause us to get stuck in a
relatively unproductive region of profile space. Policies like
MEMT can help overcome this problem.

Our experimental approach is limited by the need to know
the true game in order to evaluate intermediate exploration
results. We were nevertheless able to consider one game
(fpsb2) with an infinite strategy space. The other two ex-
perimental sources were empirical games developed for dis-
tinct purposes, with discrete strategy sets developed manu-
ally or by employing reinforcement learning. Results were
qualitatively similar, except that the expected regret curves
were much smoother and more regular for the infinite game,
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fpsb2.
Unlike their restricted-game counterparts, augmented

restricted-games allow for exact calculation of profile and
formation regret with respect to a base game. Using restricted-
game policies, we identified pathological cases where the re-
gret of the selected profile increases as additional strategies
are explored. With augmented restricted-game policies, this
pathology cannot occur.

In general, computation of augmented restricted-games or
an exact best response will not be possible for games of in-
terest. We can view approaches that generate strategies via
genetic algorithms [Phelps et al., 2006], reinforcement learn-
ing [Schvartzman and Wellman, 2009], or other heuristic op-
timization procedure as attempting to compute BR, perhaps
succeeding only approximately. To the extent ST is a form of
imperfect BR, this may be a rough model for what these ap-
proaches are accomplishing — though of course their degree
of variance from BR is not as controlled. More direct evalu-
ation of exploration policies based on heuristic optimization
is difficult to perform in a domain-independent way, never-
theless such investigations may be a worthwhile direction for
future work.

Finally, while the strategy exploration problem is a sub-
class of the profile selection problem, it has important practi-
cal uses for the profile search problem [Jordan et al., 2008],
another distinct subclass of the profile selection problem.
Foremost, in the profile search problem we (typically) at-
tempt to identify minimum-regret pure-strategy profiles, how-
ever minimum-regret mixed-strategy profiles with small sup-
port are also valuable in EGTA. Unfortunately, mixed-strategy
profiles dramatically change the search algorithms and, in
some cases, require reasonable priors over all profile pay-
offs for the algorithms to be efficacious. On the other hand,
reasoning about minimum-regret mixed-strategy profiles is
a central part of the strategy exploration problem in which
we do not require priors over the payoffs. If we are search-
ing for approximate equilibria with small support (analogous
to small formations), the strategy exploration problem is a
natural extension of the profile search problem for set-valued
solution concepts.
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